Notation and Units

Notation and Units

Complete Symbol Reference for Technical Readers


Primary Temporal Quantities

SymbolNameUnitsDimensionsDescription
T(Ω,t)Temporal FunctionalsTAccumulated emergent time over region Ω
σ_θDrift Scalars⁻¹T⁻¹Local temporal production rate
𝒟Drift Magnitudes⁻¹T⁻¹Rate of glyph field evolution
Shell-Lock1Dimensionless stability coefficient ∈ [0,1]
τRecursion ParametersTFundamental ordering parameter
t_PPlanck TimesT≈ 5.391 × 10⁻⁴⁴ s
nRecursion Index1Discrete update counter ∈ ℤ⁺

Glyph Field Stack

SymbolNameTypeUnitsDescription
ΦIntent PotentialScalar fieldLatent permission field
F_i = ∂_i ΦIntent GradientVector fieldL⁻¹Directional intent
𝒞_iCurventVector fieldL⁻¹Recursive fold direction
𝓜_{ij}Memory TensorRank-2 tensorRecursive coherence structure
ΨField StackTuple{Φ, F_i, 𝒞_i, 𝓜_{ij}}

Dilation and Alignment

SymbolNameUnitsRangeDescription
γ_ITTDilation Factor(0, 1]dt/dτ ratio
𝒜Alignment Functional[0, 1]Recursive resource allocation
Tr(𝓜)Memory Trace[0, ∞)Total memory load
Tr(𝓜)_maxMaximum Trace(0, ∞)Capacity limit
μMemory Saturation[0, 1]Tr(𝓜)/Tr(𝓜)_max

Coupling Constants

SymbolNameUnitsDescription
α_𝓜Memory CouplingWeight of ∂_t 𝓜 in drift magnitude
α_ΦIntent CouplingWeight of ∂_t ∇Φ in drift magnitude
κ_gTemporal CouplingJ⁻¹Appears in Delta threshold

Fundamental Constants

SymbolNameValueUnits
Reduced Planck constant1.055 × 10⁻³⁴J·s
GGravitational constant6.674 × 10⁻¹¹m³/(kg·s²)
cSpeed of light2.998 × 10⁸m/s
t_PPlanck time5.391 × 10⁻⁴⁴s
ℓ_PPlanck length1.616 × 10⁻³⁵m
E_PPlanck energy1.956 × 10⁹J

Operators and Derivatives

SymbolNameDefinitionDescription
Recursive OperatorΨ_{n+1} = R̂(Ψ_n)State transition map
∂_iSpatial derivative∂/∂x_ii ∈ {1,2,3}
∂_tTime derivative∂/∂tWith respect to τ
Gradient(∂_1, ∂_2, ∂_3)Spatial gradient
∇²Laplacian∂²/∂x² + ∂²/∂y² + ∂²/∂z²Scalar Laplacian
Tr(·)TraceΣ_i A_{ii}Sum of diagonal elements

Norms

NotationNameDefinitionApplication
‖v‖₂Euclidean norm√(Σ_i v_i²)Vectors
‖A‖_FFrobenius norm√(Σ_{ij} A_{ij}²)Matrices/Tensors
‖·‖Context-dependentAppropriate norm for type

Index Conventions

Index TypeSymbolsRangeUsage
Spatiali, j, k{1, 2, 3}Vector/tensor components
Recursionn, mℤ⁺ ∪ {0}Discrete state labels
SummationEinstein convention (repeated indices summed)

Example: 𝓜_{ii} = Σ_{i=1}³ 𝓜_{ii} = Tr(𝓜)


Dimensional Analysis

Using dimensional symbols: L (length), T (time), M (mass)

Core Equation Dimensions

Temporal Functional:

[T(Ω,t)] = [σ_θ] · [d³x] · [dτ]
         = T⁻¹ · L³ · T
         = L³  (or T when normalized)

Drift Production:

[σ_θ] = [𝒟] · [1 - ℒ]
      = T⁻¹ · 1
      = T⁻¹

LOAD Identity:

[γ_ITT] = [dt/dτ]
        = T/T
        = 1 (dimensionless)

Unit Systems

SI Units (Default)

All equations in this documentation use SI units unless otherwise specified.

Natural Units (ℏ = c = G = 1)

In Planck units:

  • t_P = 1
  • ℓ_P = 1
  • E_P = 1

Simplifies equations but obscures physical magnitudes.

Geometrized Units (c = G = 1)

Common in general relativity. Length and time have same units.


Quick Reference Card

EquationDimensional Check
T = ∫∫ σ_θ d³x dτT⁻¹ · L³ · T = L³
σ_θ = 𝒟(1-ℒ)T⁻¹ · 1 = T⁻¹ ✓
γ = √(1 – 𝒜²μ)√(1) = 1 ✓
Δt ≥ ℏ/(κ_g·Tr(𝓜))J·s / (J⁻¹·L²) = T ✓
t_P = √(ℏG/c⁵)√(J·s·m³/(kg·s²·m⁵/s⁵)) = T ✓

Typography Conventions

StyleUsageExamples
ItalicVariables, indicesx, t, n
BoldVectorsx, F
CalligraphicOperators, special fields𝒟, ℒ, 𝒜, 𝓜
GreekParameters, anglesσ, τ, Φ, Ω
Hat (^)Operators
SubscriptComponents, labelsσ_θ, t_P, 𝓜_{ij}

Back to Time