Notation and Units

Notation and Units

Complete Symbol Reference for Planck Core Thermodynamics


Primary Thermodynamic Quantities

SymbolNameUnitsDimensionsDefinition
sigma_thetaDrift Scalar / Entropy Productions^-1T^-1sigma_theta = D(1 – L)
T_ITTITT TemperatureKThetaT_ITT = T_0 * sigma_theta
S_thetaRecursive EntropyJ/KML^2 T^-2 Theta^-1S_theta = integral k_sigma sigma_theta d_tau
S_theta_maxMaximum EntropyJ/KML^2 T^-2 Theta^-1S_theta_max = n_max * ell_P^2 * N_folds

Drift-Lock Components

SymbolNameUnitsRangeDefinition
DDrift Magnitudes^-1[0, infinity)Rate of glyph field evolution
LShell-Lock[0, 1]Recursive stability coefficient
1 – LUnlock Factor[0, 1]Fraction available for drift

Drift Magnitude Expansion

D(x, t) = alpha_M ||dM_ij/dt||_F + alpha_Phi ||d(grad Phi)/dt||_2

Shell-Lock Definition

L(x, t) = <C(x,t), C_ref(x)> / (||C|| * ||C_ref||)

Glyph Field Stack

SymbolNameTypeUnitsRole
PhiIntent PotentialScalar fieldLatent permission field
F_i = d_i PhiIntent GradientVector fieldL^-1Directional intent
C_iCurventVector fieldL^-1Recursive fold direction
M_ijMemory TensorRank-2 tensorL^2Coherence structure
PsiField StackTuple{Phi, F_i, C_i, M_ij}

Dilation and Alignment

SymbolNameUnitsRangeDefinition
gamma_ITTDilation Factor(0, 1]gamma = sqrt(1 – A^2 * mu)
AAlignment Functional[0, 1]Substrate load fraction
Tr(M)Memory TraceL^2[0, infinity)Total memory load
muMemory Saturation[0, 1]Tr(M)/Tr(M)_max

Recursion Parameters

SymbolNameUnitsRangeDescription
nRecursion IndexZ+ union {0}Current recursive depth
n_maxMaximum Recursion(0, infinity)Computational ceiling
tauRecursion Parameters[0, infinity)Continuous recursion time
t_PPlanck Times5.391 x 10^-44 s
R_hatRecursive OperatorPsi_{n+1} = R_hat(Psi_n)

Fundamental Constants

SymbolNameValueUnits
hbarReduced Planck constant1.055 x 10^-34J*s
GGravitational constant6.674 x 10^-11m^3/(kg*s^2)
cSpeed of light2.998 x 10^8m/s
k_BBoltzmann constant1.381 x 10^-23J/K
t_PPlanck time5.391 x 10^-44s
ell_PPlanck length1.616 x 10^-35m
m_PPlanck mass2.176 x 10^-8kg
E_PPlanck energy1.956 x 10^9J
T_PPlanck temperature1.417 x 10^32K

Coupling Constants

SymbolNameUnitsRole
alpha_MMemory CouplingWeight of d_t M in drift
alpha_PhiIntent CouplingWeight of d_t grad Phi in drift
k_sigmaEntropy CouplingJ/(K*s^-1)dS/d_tau = k_sigma sigma_theta
T_0Reference TemperatureKT_ITT = T_0 sigma_theta

Black Hole / Planck Core Quantities

SymbolNameUnitsDefinition
MMasskgTotal gravitational mass
r_sSchwarzschild radiusmr_s = 2GM/c^2
r_PCPlanck Core radiusmr_PC ~ sqrt(n_max) * ell_P
AHorizon aream^2A = 4 pi r_s^2
T_HHawking temperatureKT_H = hbar c^3 / (8 pi G M k_B)
N_foldsFold site countResolution-dependent info sites

Core Equations

The Master Equation: Entropy Production

sigma_theta = D(1 - L)

ITT Temperature

T_ITT = T_0 * sigma_theta

Planck-Lock Condition

L = 1   =>   sigma_theta = 0   =>   T_ITT = 0

ITT Entropy Bound

S_theta_max = n_max * ell_P^2 * N_folds

LOAD Identity

gamma_ITT = sqrt(1 - A^2 * Tr(M)/Tr(M)_max)

Bekenstein-Hawking Entropy (GR)

S_BH = k_B c^3 A / (4 G hbar) = k_B A / (4 ell_P^2)

Hawking Temperature (GR)

T_H = hbar c^3 / (8 pi G M k_B)

Norms and Operators

NotationNameDefinitionApplication
||v||_2Euclidean normsqrt(sum_i v_i^2)Vectors
||A||_FFrobenius normsqrt(sum_ij A_ij^2)Matrices/Tensors
<u, v>Inner productsum_i u_i v_iDot product
Tr(*)Tracesum_i A_iiSum of diagonal
d_iSpatial derivatived/dx_ii in {1,2,3}
d_tTime derivatived/dtWith respect to tau
gradGradient(d_1, d_2, d_3)Spatial gradient

Index Conventions

Index TypeSymbolsRangeUsage
Spatiali, j, k{1, 2, 3}Vector/tensor components
Recursionn, mZ+ union {0}Discrete state labels
SummationEinstein convention (repeated indices summed)

Dimensional Analysis

Key Dimensional Checks

EquationDimensional Analysis
sigma_theta = D(1-L)T^-1 = T^-1 * 1
T = T_0 sigma_thetaTheta = Theta * T^-1 * T = Theta
S = n_max ell_P^2 NML^2 T^-2 Theta^-1 (with k_B)
gamma = sqrt(1 – A^2 mu)1 = sqrt(1)
t_P = sqrt(hbar G / c^5)s = sqrt(J*s * m^3/(kg*s^2) / (m/s)^5)

Unit Systems

SI Units (Default)

All equations in this documentation use SI units unless otherwise specified.

Planck Units (hbar = c = G = k_B = 1)

In Planck units: t_P = 1, ell_P = 1, E_P = 1, T_P = 1

Simplifies equations but obscures physical magnitudes.

Geometrized Units (c = G = 1)

Common in general relativity. Length and time have same units.


Quick Reference Card

QuantitySymbolKey Equation
Entropy Productionsigma_theta= D(1-L)
TemperatureT_ITT= T_0 sigma_theta
Maximum EntropyS_theta_max= n_max ell_P^2 N_folds
Dilation Factorgamma_ITT= sqrt(1 – A^2 mu)
Planck-LockL = 1 implies T = 0
Hawking Temp (GR)T_H= hbar c^3 / (8 pi G M k_B)
BH Entropy (GR)S_BH= k_B A / (4 ell_P^2)

Back to Planck Thermodynamics