Notation and Units
Complete Symbol Reference for Planck Core Thermodynamics
Primary Thermodynamic Quantities
| Symbol | Name | Units | Dimensions | Definition |
|---|
| sigma_theta | Drift Scalar / Entropy Production | s^-1 | T^-1 | sigma_theta = D(1 – L) |
| T_ITT | ITT Temperature | K | Theta | T_ITT = T_0 * sigma_theta |
| S_theta | Recursive Entropy | J/K | ML^2 T^-2 Theta^-1 | S_theta = integral k_sigma sigma_theta d_tau |
| S_theta_max | Maximum Entropy | J/K | ML^2 T^-2 Theta^-1 | S_theta_max = n_max * ell_P^2 * N_folds |
Drift-Lock Components
| Symbol | Name | Units | Range | Definition |
|---|
| D | Drift Magnitude | s^-1 | [0, infinity) | Rate of glyph field evolution |
| L | Shell-Lock | — | [0, 1] | Recursive stability coefficient |
| 1 – L | Unlock Factor | — | [0, 1] | Fraction available for drift |
Drift Magnitude Expansion
D(x, t) = alpha_M ||dM_ij/dt||_F + alpha_Phi ||d(grad Phi)/dt||_2
Shell-Lock Definition
L(x, t) = <C(x,t), C_ref(x)> / (||C|| * ||C_ref||)
Glyph Field Stack
| Symbol | Name | Type | Units | Role |
|---|
| Phi | Intent Potential | Scalar field | — | Latent permission field |
| F_i = d_i Phi | Intent Gradient | Vector field | L^-1 | Directional intent |
| C_i | Curvent | Vector field | L^-1 | Recursive fold direction |
| M_ij | Memory Tensor | Rank-2 tensor | L^2 | Coherence structure |
| Psi | Field Stack | Tuple | — | {Phi, F_i, C_i, M_ij} |
Dilation and Alignment
| Symbol | Name | Units | Range | Definition |
|---|
| gamma_ITT | Dilation Factor | — | (0, 1] | gamma = sqrt(1 – A^2 * mu) |
| A | Alignment Functional | — | [0, 1] | Substrate load fraction |
| Tr(M) | Memory Trace | L^2 | [0, infinity) | Total memory load |
| mu | Memory Saturation | — | [0, 1] | Tr(M)/Tr(M)_max |
Recursion Parameters
| Symbol | Name | Units | Range | Description |
|---|
| n | Recursion Index | — | Z+ union {0} | Current recursive depth |
| n_max | Maximum Recursion | — | (0, infinity) | Computational ceiling |
| tau | Recursion Parameter | s | [0, infinity) | Continuous recursion time |
| t_P | Planck Time | s | — | 5.391 x 10^-44 s |
| R_hat | Recursive Operator | — | — | Psi_{n+1} = R_hat(Psi_n) |
Fundamental Constants
| Symbol | Name | Value | Units |
|---|
| hbar | Reduced Planck constant | 1.055 x 10^-34 | J*s |
| G | Gravitational constant | 6.674 x 10^-11 | m^3/(kg*s^2) |
| c | Speed of light | 2.998 x 10^8 | m/s |
| k_B | Boltzmann constant | 1.381 x 10^-23 | J/K |
| t_P | Planck time | 5.391 x 10^-44 | s |
| ell_P | Planck length | 1.616 x 10^-35 | m |
| m_P | Planck mass | 2.176 x 10^-8 | kg |
| E_P | Planck energy | 1.956 x 10^9 | J |
| T_P | Planck temperature | 1.417 x 10^32 | K |
Coupling Constants
| Symbol | Name | Units | Role |
|---|
| alpha_M | Memory Coupling | — | Weight of d_t M in drift |
| alpha_Phi | Intent Coupling | — | Weight of d_t grad Phi in drift |
| k_sigma | Entropy Coupling | J/(K*s^-1) | dS/d_tau = k_sigma sigma_theta |
| T_0 | Reference Temperature | K | T_ITT = T_0 sigma_theta |
Black Hole / Planck Core Quantities
| Symbol | Name | Units | Definition |
|---|
| M | Mass | kg | Total gravitational mass |
| r_s | Schwarzschild radius | m | r_s = 2GM/c^2 |
| r_PC | Planck Core radius | m | r_PC ~ sqrt(n_max) * ell_P |
| A | Horizon area | m^2 | A = 4 pi r_s^2 |
| T_H | Hawking temperature | K | T_H = hbar c^3 / (8 pi G M k_B) |
| N_folds | Fold site count | — | Resolution-dependent info sites |
Core Equations
The Master Equation: Entropy Production
sigma_theta = D(1 - L)
ITT Temperature
T_ITT = T_0 * sigma_theta
Planck-Lock Condition
L = 1 => sigma_theta = 0 => T_ITT = 0
ITT Entropy Bound
S_theta_max = n_max * ell_P^2 * N_folds
LOAD Identity
gamma_ITT = sqrt(1 - A^2 * Tr(M)/Tr(M)_max)
Bekenstein-Hawking Entropy (GR)
S_BH = k_B c^3 A / (4 G hbar) = k_B A / (4 ell_P^2)
Hawking Temperature (GR)
T_H = hbar c^3 / (8 pi G M k_B)
Norms and Operators
| Notation | Name | Definition | Application |
|---|
| ||v||_2 | Euclidean norm | sqrt(sum_i v_i^2) | Vectors |
| ||A||_F | Frobenius norm | sqrt(sum_ij A_ij^2) | Matrices/Tensors |
| <u, v> | Inner product | sum_i u_i v_i | Dot product |
| Tr(*) | Trace | sum_i A_ii | Sum of diagonal |
| d_i | Spatial derivative | d/dx_i | i in {1,2,3} |
| d_t | Time derivative | d/dt | With respect to tau |
| grad | Gradient | (d_1, d_2, d_3) | Spatial gradient |
Index Conventions
| Index Type | Symbols | Range | Usage |
|---|
| Spatial | i, j, k | {1, 2, 3} | Vector/tensor components |
| Recursion | n, m | Z+ union {0} | Discrete state labels |
| Summation | — | — | Einstein convention (repeated indices summed) |
Dimensional Analysis
Key Dimensional Checks
| Equation | Dimensional Analysis |
|---|
| sigma_theta = D(1-L) | T^-1 = T^-1 * 1 |
| T = T_0 sigma_theta | Theta = Theta * T^-1 * T = Theta |
| S = n_max ell_P^2 N | ML^2 T^-2 Theta^-1 (with k_B) |
| gamma = sqrt(1 – A^2 mu) | 1 = sqrt(1) |
| t_P = sqrt(hbar G / c^5) | s = sqrt(J*s * m^3/(kg*s^2) / (m/s)^5) |
Unit Systems
SI Units (Default)
All equations in this documentation use SI units unless otherwise specified.
Planck Units (hbar = c = G = k_B = 1)
In Planck units: t_P = 1, ell_P = 1, E_P = 1, T_P = 1
Simplifies equations but obscures physical magnitudes.
Geometrized Units (c = G = 1)
Common in general relativity. Length and time have same units.
Quick Reference Card
| Quantity | Symbol | Key Equation |
|---|
| Entropy Production | sigma_theta | = D(1-L) |
| Temperature | T_ITT | = T_0 sigma_theta |
| Maximum Entropy | S_theta_max | = n_max ell_P^2 N_folds |
| Dilation Factor | gamma_ITT | = sqrt(1 – A^2 mu) |
| Planck-Lock | — | L = 1 implies T = 0 |
| Hawking Temp (GR) | T_H | = hbar c^3 / (8 pi G M k_B) |
| BH Entropy (GR) | S_BH | = k_B A / (4 ell_P^2) |
Back to Planck Thermodynamics