Notation and Units
Complete Symbol Reference for The Entropy Scroll
Core Entropy Symbols
| Symbol |
Name |
Domain |
Definition |
| σθ |
Unbinding scalar |
[0, ∞) |
σθ = 𝒟(1 − ℒ) |
| Sθ |
Recursive entropy |
[0, Sθ,max] |
Sθ = ∫Σ σθ d³x |
| Sθ,max |
Entropy ceiling |
Fixed |
nmax · ℓP² · Nfolds |
| 𝒮 |
Saturation ratio |
[0, 1] |
𝒮 = Sθ / Sθ,max |
Drift-Lock Components
| Symbol |
Name |
Domain |
Definition |
| 𝒟 |
Drift magnitude |
[0, ∞) |
αM‖∂nℳij‖F + αΦ‖∂n∇Φ‖2 |
| ℒ |
Shell-lock |
[0, 1] |
Recursive coherence measure |
| αM |
Memory coupling |
ℝ⁺ |
Weight for memory drift |
| αΦ |
Intent coupling |
ℝ⁺ |
Weight for intent drift |
Glyph Field Stack
| Symbol |
Name |
Type |
Role |
| Φ |
Intent potential |
Scalar field |
Recursive direction encoding |
| Ci |
Curvent field |
Vector field |
Recursive flow vector |
| ℳij |
Memory tensor |
Symmetric tensor |
State coherence storage |
| 𝒜 |
Alignment scalar |
Scalar [-1, 1] |
𝒜 = ⟨Ci, ∇Φ⟩ / (‖C‖·‖∇Φ‖) |
Recursion Parameters
| Symbol |
Name |
Domain |
Meaning |
| n |
Recursion depth |
[0, nmax] |
Current fold number |
| nmax |
Maximum depth |
ℕ |
Planck ceiling on recursion |
| τ |
Recursive time |
[0, τmax] |
Continuous recursion parameter |
| R̂ |
Recursive operator |
Functional |
R̂(Ψn) = Ψn+1 |
Time-Related Symbols
| Symbol |
Name |
Definition |
| T |
Time functional |
T = ∫ dSθ/σθ |
| T[Ψ] |
Temporal functional |
T[Ψ] = ∫ σθ d³x · tP |
| γITT |
Time dilation |
γITT = √(1 − 𝒜²·Tr(ℳ)/Tr(ℳ)max) |
| tP |
Planck time |
5.39 × 10⁻⁴⁴ s |
Temperature Symbols
| Symbol |
Name |
Definition |
| TITT |
ITT temperature |
TITT = T0 · σθ |
| T0 |
Reference temperature |
Planck temperature |
| TP |
Planck temperature |
1.42 × 10³² K |
Thermodynamic Mapping
| ITT Symbol |
Classical Analog |
Relation |
| Sθ |
S (Boltzmann) |
Sθ = kσ ln WITT |
| σθ |
dQ/T |
σθ dτ ↔ dQ/T |
| TITT |
T |
TITT = T0 · 𝒟(1−ℒ) |
| WITT |
W (microstates) |
WITT = exp(∫ 𝒟(1−ℒ) dV) |
Fundamental Constants
| Symbol |
Name |
Value |
Role in ITT |
| ℓP |
Planck length |
1.62 × 10⁻³⁵ m |
Substrate resolution |
| tP |
Planck time |
5.39 × 10⁻⁴⁴ s |
Minimum time step |
| ℓP² |
Planck area |
2.61 × 10⁻⁷⁰ m² |
Entropy quantum |
| ℏ |
Reduced Planck |
1.05 × 10⁻³⁴ J·s |
Action quantum |
| G |
Newton’s constant |
6.67 × 10⁻¹¹ N·m²/kg² |
Gravity strength |
| c |
Speed of light |
3 × 10⁸ m/s |
Causality limit |
Key Equations Summary
The Fundamental Four
| Name |
Equation |
| Unbinding identity |
σθ = 𝒟(1 − ℒ) |
| Entropy functional |
Sθ = ∫Ω Σ σθ(x,n) d³x |
| Time from entropy |
T = ∫ dSθ/σθ |
| Entropy ceiling |
Sθ,max = nmax · ℓP² · Nfolds |
The Second Law (ITT Form)
The LOAD Identity
γITT = √(1 − 𝒜² · Tr(ℳ)/Tr(ℳ)max)
Back: Chapter 7 — Computation of Reality
Start: Entropy Overview