Notation and Units

Notation and Units

Complete Symbol Reference for The Entropy Scroll


Core Entropy Symbols

Symbol Name Domain Definition
σθ Unbinding scalar [0, ∞) σθ = 𝒟(1 − ℒ)
Sθ Recursive entropy [0, Sθ,max] Sθ = ∫Σ σθ d³x
Sθ,max Entropy ceiling Fixed nmax · ℓP² · Nfolds
𝒮 Saturation ratio [0, 1] 𝒮 = Sθ / Sθ,max

Drift-Lock Components

Symbol Name Domain Definition
𝒟 Drift magnitude [0, ∞) αM‖∂nijF + αΦ‖∂n∇Φ‖2
Shell-lock [0, 1] Recursive coherence measure
αM Memory coupling ℝ⁺ Weight for memory drift
αΦ Intent coupling ℝ⁺ Weight for intent drift

Glyph Field Stack

Symbol Name Type Role
Φ Intent potential Scalar field Recursive direction encoding
Ci Curvent field Vector field Recursive flow vector
ij Memory tensor Symmetric tensor State coherence storage
𝒜 Alignment scalar Scalar [-1, 1] 𝒜 = ⟨Ci, ∇Φ⟩ / (‖C‖·‖∇Φ‖)

Recursion Parameters

Symbol Name Domain Meaning
n Recursion depth [0, nmax] Current fold number
nmax Maximum depth Planck ceiling on recursion
τ Recursive time [0, τmax] Continuous recursion parameter
Recursive operator Functional R̂(Ψn) = Ψn+1

Time-Related Symbols

Symbol Name Definition
T Time functional T = ∫ dSθθ
T[Ψ] Temporal functional T[Ψ] = ∫ σθ d³x · tP
γITT Time dilation γITT = √(1 − 𝒜²·Tr(ℳ)/Tr(ℳ)max)
tP Planck time 5.39 × 10⁻⁴⁴ s

Temperature Symbols

Symbol Name Definition
TITT ITT temperature TITT = T0 · σθ
T0 Reference temperature Planck temperature
TP Planck temperature 1.42 × 10³² K

Thermodynamic Mapping

ITT Symbol Classical Analog Relation
Sθ S (Boltzmann) Sθ = kσ ln WITT
σθ dQ/T σθ dτ ↔ dQ/T
TITT T TITT = T0 · 𝒟(1−ℒ)
WITT W (microstates) WITT = exp(∫ 𝒟(1−ℒ) dV)

Fundamental Constants

Symbol Name Value Role in ITT
P Planck length 1.62 × 10⁻³⁵ m Substrate resolution
tP Planck time 5.39 × 10⁻⁴⁴ s Minimum time step
P² Planck area 2.61 × 10⁻⁷⁰ m² Entropy quantum
Reduced Planck 1.05 × 10⁻³⁴ J·s Action quantum
G Newton’s constant 6.67 × 10⁻¹¹ N·m²/kg² Gravity strength
c Speed of light 3 × 10⁸ m/s Causality limit

Key Equations Summary

The Fundamental Four

Name Equation
Unbinding identity σθ = 𝒟(1 − ℒ)
Entropy functional Sθ = ∫Ω Σ σθ(x,n) d³x
Time from entropy T = ∫ dSθθ
Entropy ceiling Sθ,max = nmax · ℓP² · Nfolds

The Second Law (ITT Form)

dℒ/dn ≤ 0 ⟹ dSθ/dn ≥ 0

The LOAD Identity

γITT = √(1 − 𝒜² · Tr(ℳ)/Tr(ℳ)max)


Back: Chapter 7 — Computation of Reality

Start: Entropy Overview